The metabotropic GABAB receptor directly interacts with the activating transcription factor 4.

نویسندگان

  • R B Nehring
  • H P Horikawa
  • O El Far
  • M Kneussel
  • J H Brandstätter
  • S Stamm
  • E Wischmeyer
  • H Betz
  • A Karschin
چکیده

G protein-coupled receptors regulate gene expression by cellular signaling cascades that target transcription factors and their recognition by specific DNA sequences. In the central nervous system, heteromeric metabotropic gamma-aminobutyric acid type B (GABA(B)) receptors through adenylyl cyclase regulate cAMP levels, which may control transcription factor binding to the cAMP response element. Using yeast-two hybrid screens of rat brain libraries, we now demonstrate that GABA(B) receptors are engaged in a direct and specific interaction with the activating transcription factor 4 (ATF-4), a member of the cAMP response element-binding protein /ATF family. As confirmed by pull-down assays, ATF-4 associates via its conserved basic leucine zipper domain with the C termini of both GABA(B) receptor (GABA(B)R) 1 and GABA(B)R2 at a site which serves to assemble these receptor subunits in heterodimeric complexes. Confocal fluorescence microscopy shows that GABA(B)R and ATF-4 are strongly coclustered in the soma and at the dendritic membrane surface of both cultured hippocampal neurons as well as retinal amacrine cells in vivo. In oocyte coexpression assays short term signaling of GABA(B)Rs via G proteins was only marginally affected by the presence of the transcription factor, but ATF-4 was moderately stimulated in response to receptor activation in in vivo reporter assays. Thus, inhibitory metabotropic GABA(B)Rs may regulate activity-dependent gene expression via a direct interaction with ATF-4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-talk and regulation between glutamate and GABAB receptors

Brain function depends on co-ordinated transmission of signals from both excitatory and inhibitory neurotransmitters acting upon target neurons. NMDA, AMPA and mGluR receptors are the major subclasses of glutamate receptors that are involved in excitatory transmission at synapses, mechanisms of activity dependent synaptic plasticity, brain development and many neurological diseases. In addition...

متن کامل

Expression and Clinical Significance of Activating Transcription Factor 3 in Human Breast Cancer

  Objective(s): Breast cancer is the most common type of cancer among women worldwide. This study investigated the expression and clinical significance of activating transcription factor 3 (ATF3) in human breast cancer and its relationship with the clinical outcome of breast cancer.   Materials and Methods : ATF3 expressions were detected in 114 primary breast cancer tissues and ...

متن کامل

Recent advances in GABA receptor biology have resulted in elucidation of the molecular structure of a GABAB protein with similarity to metabotropic

Julia H. White Fiona H. Marshall 7TMReceptor Systems, Molecular Pharmacology Dept, GlaxoWellcome Research and Development, Medicines Research Centre, Stevenage, Hertfordshire, UK SG1 2NY. Recent advances in GABA receptor biology have resulted in elucidation of the molecular structure of a GABAB protein with similarity to metabotropic glutamate receptors (mGluRs), GABAB(1) (Ref. 1), and the subs...

متن کامل

Profile of changes in gene expression in cultured hippocampal neurones evoked by the GABAB receptor agonist baclofen.

Metabotropic gamma-aminobutyric acid receptors (GABA(B)Rs) play a critical role in inhibitory synaptic transmission in the hippocampus. However, little is known about a possible long-term effect requiring transcriptional changes. Here, using microarray technology and RT-PCR of RNA from cultured rat embryonic hippocampal neurones, we report the profile of genes that are up- or downregulated by a...

متن کامل

The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx.

gamma-Aminobutyric acid type B (GABA(B)) receptors mediate the metabotropic actions of the inhibitory neurotransmitter GABA. These seven-transmembrane receptors are known to signal primarily through activation of G proteins to modulate the action of ion channels or second messengers. The functional GABA(B) receptor is made up of a heterodimer consisting of two subunits, GABA(B)-R1 and GABA(B)-R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 45  شماره 

صفحات  -

تاریخ انتشار 2000